Technical Design Document

For

Danger Ball ‘77
[image: image1.jpg]GUILDHALL

A

&

IIIHGEIIBII[1

Team &

Authors: Nader Akoury, Jeremy Baggett,

James Stewart, Josh Szepietowski
Table of Contents
1. Mission ……………………………………………………………
2
2. Software Architecture …………………………………………...
2
3. Major Systems …………………………………………………...
2
3.1 Movement …………………………………………………
2
3.2 Rail Grinding ……………………………………………...
5
3.3 Custom Level Objects …………………………………….
8
3.4 Melee Weapons …………………………………………...
10
3.5 Targeting System ………………………………………….
11
3.6 Ranged Weapons…………………………………………..
13
3.7 Ball Passing and Goal Scoring …………………………….
14
3.8 Character Classes ………………………………………….
15
3.9 Menu and HUD Subsystems ………………………………
16
3.10 Minor Systems ……………………………………………
17
4. Naming Conventions, Coding Standards, and
Directory Structure …………………………………………..
18
5. Milestones …………………………………………………………
19
6. Technology Used ………………………………………………….
21

6.1 Target Specifications …..
21

6.2 Tools ……………………………………………………….
22

6.3 Cost Analysis ………………………………………………
22

Section 1: Mission
This mod will be built using the Unreal 2004 game engine. Our goal is to create a total conversion of the Unreal 2004, replacing the standard gameplay with that of a sports game. All of the programming is designed to use the existing Unreal Script to the best of its capabilities. This means that as programmers we strive to reuse as much of the code as is possible. In some circumstances this strategy is unfeasible. In those circumstances we have greatly detailed our reasoning behind choosing a strategy contrary to this mission statement.

Section 2: Software Architecture

Seeing as this game is a mod of an existing game and engine, using a specific architecture is not critical. This game’s various subsystems are built on existing systems so it seems best to simply follow the existing architecture and place modifications where they would best fit. Due to the limited scope and schedule of this project, no extensive efforts will be made to establish a robust, abstract architecture. Instead code entropy will be avoided through the use of adequate commenting, code isolation as needed and limited team size.

Section 3: Major Systems

3.1 Movement

Due to the fast-pace and nature of the game, quick and natural movement along a number of surfaces is a critical aspect of the game. Movement within a game’s world is central to most games so there are a number of ways to approach this problem. Even within the structure of the UnrealEngine 2 the multiple ways to attack this question.

Problem

Primary Goal – Give the player the appearance and feeling of being on roller-skates.

Solution Requirements

· Able to roll up ramped and curved surfaces, including half-pipes and loops.

· Have physics attributes that lend to a feeling of using roller-skates without being distracting or hurting gameplay including proper inertia, friction, turning, and acceleration.

· Proper response upon collision with the ground, walls, ramps, obstacles, and other players

· Proper alignment to any curved surfaces including those in excess of 45 degrees from horizontal.

· Able to start & switch animations based on events such as impacting walls, gliding, and turning sharply.

· Must react normally to physics volumes, world geometry, etc
Strategy #1 – Use Karma

One strategy that developed was to use the UnrealEngine 2’s existing movement code and Karma physics engine. The Karma variables needed to produce the desired behavior would be set as default properties of each Skater actor.

Advantages:

· Allows physics to be handled within the native section of the engine, therefore presumably, running more efficiently.

· Requires the least amount of code to be written

· Level Designers would be able to alter the Karma parameters and so the resulting behavior.

· Allows custom collision volumes to be used.

Disadvantages:

· Programmers have little experience using the Karma engine. Learning what variables to use and what to set them to in order to produce the desired result would require a non-trivial amount of time and research.

· Karma states do not properly replicate over a network and may become out-of-sync. The solution of sending the entire Karma state over a network prevents the game from being played on slower, non-LAN connections.

· Programmers would lose the ability to specifically set the skater’s location, rotation, velocity, etc as these would be overridden by the Karma engine.

Strategy #2 – Use built in physics states (Spidering, Flying)

Another strategy was to use physics states that already exist within UnrealEngine 2 and extend off of them to provide the additional functionality needed. The two states that seemed to provide the best basis for a player on skates were the PHYS_Spider and PHYS_Flying states. The PHYS_Spider state contains the code needed to move on and align the player to any surface. Using the PHYS_Flying state allows you to easily glide around the world using an arbitrary orientation. These two states would be combined and additions made until the resulting combined state displayed the proper skating behavior.
Advantages:

· Much of the physics code is already written and embedded within UnrealEngine 2

· Allows the player to be oriented to any surface.

Disadvantages:
· The skater’s physics state could be set to an undesired state by the Unreal engine.

· Existing physics code could interfere with the wanted behavior

· Does not give the programmer complete control over movement, though this can be worked around.

· The two physics states could be incompatible, resulting in hacks and patching code in order to fix it.

Strategy #3 – Use mover objects.

A third strategy was to use a mover object that the skater’s actor would be attached to. This mover object would be given generated path to follow, bringing the skater along with it as it moved. This would eliminate the problems encountered when using PHYS_Walking and allow the skater to be specifically placed and oriented. The existing physics and collision code would be used and extended upon as needed.

Advantages:

· Eliminates the problems encountered in the PHYS_Walking state.

· Allows the skater to be placed and oriented precisely.
Disadvantages:

· Programmers have little experience using movers and attaching actors to moving bases. This strategy would require much research that may not result in the desired effect.
· How to execute proper collision handling of a mover and attached actor would also require research.

· Solution feels hacky and difficult to add to.
· Setting the mover’s velocity properly seems problematic.

· This would require the skater to be in PHYS_MovingBrush. That takes the control out of the programmers’ hands to determine extra effects such as acceleration due to gravity, impact velocities, etc.

Strategy #4 – Use custom physics code.

The last strategy offered was to completely separate the skater’s movement code from any existing physics within UnrealEngine 2. As long as the player’s location and rotation could be reliably set and surface normals easily determined, physics and movement code could be written to precisely fit the desired behavior. Forcing the Unreal engine to always be in PHYS_None gives the programmer full control over the physics of the skater.

Advantages:

· Changing the skater’s velocity, acceleration, orientation, collision response, etc would be easy due to the full control granted to the programmer by this solution.
· Allows for all solution requirements to be precisely met.
Disadvantages:

· Requires complete separation from and re-write of existing movement code.

· Level Designers may be unfamiliar with the new physics behavior.

· Requires the most amount of programming.
· Constant physics state changes and performing new physics calculations in UnrealScript may result in a performance hit.

· Is dependant on UnrealEngine 2 to allow the skater’s location and orientation to be set and not changed in addition to receiving accurate collision information.

Strategy Used

Of the strategies presented, using custom physics code (Strategy #4), seems to be the most desirable. Strategy #1, using Karma, limits network options, and would require a large amount of research time with no promise of proper results. However, due to the minimal code needed to develop this solution, it will remain an alternative should strategy #4 suffer some catastrophic failure. The other two strategies (Using existing physics states, using mover objects) do not meet the solution requirements without extensive changes and therefore are rejected. While using custom physics code requires the most time and code to be written, due to the significant part movement plays on the game, the flexibility and precision offered by this solution is nearly essential.

Risks

The large impact this code has on the game and the amount code required causes the solution to incur a large amount of risk. However, due to the control this strategy provides the risk that it will provide an undesired result is minimized. Many of the solution requirements have already been met in prototype code using this strategy, further reducing the risk. The movement code will be kept simple, using only basic particle physics tailored to producing the wanted look and feel. Exotic features such as rigid body dynamics and rag-doll physics are not needed, further reducing the risk. The relative size and calculation required by this section of code increases the risk that developing it using UnrealScript may contribute to a decrease in the game’s performance. There are no indications, however, that this is the case, and due to the amount of existing game code that uses UnrealScript and its embedded nature this risk is minimized. This solution allows the control over movement needed and carries an acceptable level of risk.

3. 2 Rail Grinding
One of the central aspects of the game is jumping onto rails and grinding along them, similar to the Tony Hawk series of games. There are a number of different techniques that were looked into to finally determine the best method to implement this feature. One of the most important considerations for the final implementation strategy is ease of placing rails into the levels.
Primary Goal – Give the player the appearance and feeling of grinding along a rail.

Solution Requirements

· Easily jump on to grinding rails at any angle.
· Have the skater’s movement locked to the direction and shape of the rail.

· Support multiple rails of any shape in close proximity to each other

· Be able to set a jump-off direction to prevent jumping off of a rail into a wall or other undesirable area.

· Able to force the player off the rail when velocity falls below a set threshold.
Strategy #1 – New ‘Rail’ Physics Volume
The first strategy is to create a new physics volume that the level designers can place. The volume would be molded into the shape of the rail that the player would grind on. This new physics volume would contain a direction vector denoting which direction to move the player along once in the volume. Additionally, a new player controller state would be required which handles all of the player physics and movement once inside the physics volume.

Advantages:

· This requires very little programming of the actual physics volume.

· Requires the least number of new classes and functions amongst the various other possible implementation strategies.
Disadvantages:

· Makes the level designers have to work much harder to put a rail grinding surface into the game.

· The volume must be exactly the same size as the rail that the player will grind on.

· Since there is only a single direction vector, it would be extremely difficult to orient the player to look like the player is actually moving along the top of the rail. The character might instead seem to be grinding along some other offset.

· Having rails that are not strictly straight becomes a problem. The level designers would need to place several different physics volumes to try to implement rails that change direction.
· No two grinding physics volumes would be able to overlap.

· Determining the correct vector to move along in the level editor would be difficult. It would be come more trial and error because there are no reference points to gauge the vector off of. This would result in players that either seem to sink into the rails or start floating above the rails.
Strategy #2 – Use a Mover object.
This second strategy also involves the creation of a new physics volume. Instead of needing to mold the volume into the shape of the rail, the volume would just be required to contain the entire rail that is to be placed. There would be a mover with a set path inside of the physics volume. An additional watcher class would be needed to determine when the player has crossed the mover’s path. At that point the mover would be move to the intersection point and the player would be attached to the mover. The mover would then handle the player’s movement along the rail.
Advantages:

· This allows for rails that do not have to be strictly straight.

· The physics volume would no longer have to be in the shape of the rail the player is grinding on.

· Level designers are already familiar with the use of movers for objects such as lifts.

· Movement along the rail would feel correct because the level designers can lay down a path that follows the physical rail.

· Multiple grinding physics volumes can overlap without causing problems.

Disadvantages:

· Programmers have very little experience with the use of movers. This would require a significant amount of research in determining the best way of implementing the mover.

· How to determine the collision with the mover’s path is not immediately obvious.

· Since there is only one mover for a rail only one person would be able to grind on a rail at any one time.

· Modifying the velocity of the mover to accurately reflect the player’s velocity could be troublesome.

· Movers use the physics state PHYS_MovingBrush. That takes the control out of the programmers’ hands to determine extra effects such as acceleration due to gravity, impact velocities, etc.

Strategy #3 – Custom Rail-Path Nodes.
This final strategy would be quite similar to strategy number two. Instead of having a mover that the player would have to attach to, there would be a number of path nodes defined. These path nodes would be simple place-able actors that hold a number of attributes such as location, rail id, numbered order within the rail, and whether or not the path node is an end cap. The watcher would now determine if the player hit along any one of the lines between path nodes. The player would be moved onto the line and use the physics state PHYS_None. The player controller state would apply all the movement forces needed to move. It would also handle rotating smoothly along the rail between path nodes.
Advantages:

· This allows for rails that do not have to be strictly straight.

· The physics volume no longer has to be in the shape of the rail.

· Placing a path node is simple and only requires setting a few properties.

· Movement along the rail would look correct because the level designers can see the path the player will move along within the editor.

· Multiple grinding physics volumes can overlap without causing problems.

· Does not require the programmers to use the movers which have an inflexible physics state.

· It is quite easy to determine the collision with the line segment between path nodes.

· Modifying the player’s velocity would be easy since the programmer has full control of the character.

· Add extra forces such as gravity and impacts would also be easy since the programmer has full control over the physics, when using PHYS_None.
Disadvantages:

· Assigning rail grinding path nodes would be slightly different than placing a mover, so the level designers would have to take some getting used to the technique.

· Requires re-writing movement code that movers already have inherently.

· Requires the most amount of programming from the programmers.

Strategy Used
After careful consideration strategy number three seems to be the best strategy. In fact after initially attempting to prototype the rail grinding the code with the first two strategies and failing, the third strategy worked out naturally. Despite having to write more code, the third technique turned to have the most flexibility and was the easiest to program conceptually.
Risks
Despite the fact that the rail grinding code has been successfully prototyped, it has yet to really be tested in creation of a game level with level designers. So there might be some slight risk associated with the rail grinding, but it is likely very minimal.
3.3 Custom Level Objects
There are many uses for custom level objects in the game. The most important role of these placeable level objects is to give hints to the skater and movement system to ensure proper physical simulation of the players in the world. This leads to a fairly basic view of what a custom level object entails. It is simply a placeable actor with a number of physical attributes and functions to provide, for example, speed boosts, stamina regeneration, or damage. This will also include simple, aesthetic elements such as cones, trash bags, etc. On the level design side each type of custom level object with have its own static mesh and list of attributes.
Primary Goal – Provide designers with placeable objects that trigger game events.
Solution Requirements

· Easily integrate with UnrealEd
· Provide all of the needed game triggers / events
· Work the same across levels
Strategy #1 – Custom object classes
This strategy is to create a new set of classes which derive from the Unreal class Actor. Different custom level objects would be represented by different classes.
Advantages:

· Allows great flexibility in the use of the classes.

· Since the classes are separate they can each have class specific functions.
· Changing one level object should not affect the way the other level objects behave.

Disadvantages:

· Each class would have to be coded separately.
· The underlying code which makes use of the custom level objects would become much more complicated.

· Each time a new object class is added to the code base, the underlying code would have to be modified to take care of the new class. This can become time consuming.

· The level designers would have a large number of objects to choose from, which might make it difficult to determine the best one to use for a certain circumstance.

Strategy #2 – Single Monolith Class
This second strategy is to create a single class to represent all custom level object types.

Advantages:

· Only one class needs to be created.

· When adding functionality there is one central location in which that can be done.

· Changing this one class has global ramifications to all the level objects in the game. This can be advantageous at times.

· The amount of programmer time spent on this aspect of the game is minimized, giving the programmers more time to work on other aspects of the game.

Disadvantages:

· The flexibility of the individual level object types is greatly reduced.

· The custom level object class could easily become bloated by adding too many unrelated functions that one a specific type of level object requires.

· Changing this one class has global ramifications to all the level objects in the game. Sometimes this might conflict with the expectations and work that the level designers have already put into the levels.
· The number of attributes in the attributes list can become quite bewildering if there are a large number of different level object types represented by this one monolithic level object class.

Strategy Used
The strategy that the team has decided to use is strategy number two. The extra time the programmers have by making this pared down version of the custom level object, allows for more time to polish the game. This is an important consideration, especially due to the tight time constraints demanded by our publisher. The strategy does not limit the flexibility too greatly and it is really unanticipated that the level designers will need that extra flexibility.
Risks
As games progress often times so do the technical requirements. If at some point down the line in the game’s development cycle it is determined that the level designers do in fact need the extra flexibility of strategy number one, it could be calamatous. The short development cycle we have could not possibly accommodate redoing all the level design and programming for the custom level objects from the beginning. The level designers will just simply have to confine their designs to fit the limitations of the project.
3.4 Melee Weapons
Melee weapons form the core of the game weapon systems. They are the primary way to exhaust opponents. Planned are there to be two classes of melee weapons: pipe-like weapons with offensive focus, and shield-like weapons with defensive focus. Although there are two separate classes the current plan is to have multiple visual appearances within those classes. It may be desired to tweak statistics between visuals (such that, for example, a monkey wrench is more damaging then pipe).
Primary Goal – Give the player the weapons to hurt each other with.

Solution Requirements

· Rough support for tweakable stats if needed
· Easily tie into the targeting system.
· Proper weapon / skater collision detection
· Support Lunging, Attack animations, proper attachment to skater mesh.
· Apply the proper forces and damage to attacked skaters
Strategy #1 – Create Only That Which is Needed.
This strategy is to create two custom weapon objects derived from the Weapon. These would contain the main behavior characteristics. If needed individual instances can have their statistics tweaked.
Advantages:

· Only two classes need to be created.

· This provides the simplest approach in the event that different visuals will not require different stats.
· This provides flexibility to allow programmers to tweak instances.

· Current design is that different visuals don’t result in different weapons.
Disadvantages:

· In the event of design change, this is an inelegant way to approach different weapon needs.
· Requires extra programmer overhead in event of design change.
Strategy #2 – Plan for Change.
A different option is to plan for the design change and make the two melee classes designed in a way that they can easily be extended. Classes which extend on them will provide the details of statistics.

Advantages:

· Provides an elegant and Object-Oriented way of handling multiple variations on a melee class.

· Allows great flexibility in event of design change, even allowing slightly different behavior between similar types of melee weapons.

· Does not add much complexity to the classes.

Disadvantages:

· Current design does not require the advantages this provides.

Strategy Used
The second strategy will be used. Although planning for a design change may be a poor idea, in this case there are no apparent disadvantages to doing so. In the case that design does change this setup will be appreciated.
Risks
This is not a very risky feature. Melee weapons are well understood and Unreal provides a good example to go by that already offers both defensive and offensive capabilities in the Shield Gun.
3.5 Targeting System
Since melee weapons are such a large aspect of gameplay they must be simple to use and non-frustrating. To achieve this, a player will target other players and have the ability to lunge at their target. Targeting will also be used for passing the ball to team members. It is possible it may find other uses, and as such should be a generalized system.
Primary Goal – Allow the player to easily select and target players, enemies, and goals.

Solution Requirements

· Easily select and scroll through the targets currently on the screen.

· Display an indicator that the target is selected either through a HUD icon of game-space reticle.

· Integrate with the movement code to allow for basic following / locking-on to a selected target.

Strategy #1 – Specific Targeting Integrated into Pawn
This strategy is to add targeting functions to the custom version of Pawn to be used in the game specific to the type of object being targeted.
Advantages:

· Provides custom mechanisms to target various objects, which is useful since objects may not be targeted by the same metrics.
· Straight forward implementation.
· Simple usage – the Pawn and classes normally associated with Pawn will be the primary users of this functionality.
Disadvantages:

· Requires different implementations for different targeting systems.
· Does not allow targeting code to be accessible to classes that have no association with Pawn.

· Adds another reason for Pawn to be checked out, possibly causing a source control bottleneck in the workflow.
Strategy #2 – General Targeting Integrated into Pawn
Include the functionality in Pawn, but try to generalize it so that it can easily be adapted to various object types. Each object would still be targeting through custom functions, but the back-end between functions would be common.

Advantages:

· Presents a way for targeting various objects that is robust.

· Increases code reuse through sharing common functionality.

· Relatively easy implementation and usage.

· Makes task of adding code to target new objects much easier.

· Requires only one backend implementation between targeting systems.

Disadvantages:

· Forces the backend between targeting systems to be similar (loses some flexibility).

· Does not allow targeting code to be accessible to classes that have no association with Pawn.

· Pawn still given extra load, resulting in a possible source control bottleneck in the workflow.
Strategy #3 – Custom Targeting Object
Another option is to create a new class whose entire function is to manage targeting. It would process target acquisition requests from Pawn and return results.

Advantages:

· Allows code to be spread among more files, preventing source control bottleneck in workflow.

· Easily could use a unified backend to make targeting code for new objects easy to write.

· Very modular and conforms to object oriented design ideals.
· Allows targeting code to be accessible to classes without associations with Pawn.

Disadvantages:

· Adds additional complication to targeting code and storing current target.
· Classes that do not associate with Pawn are unlikely to need access to this functionality.

· Possible performance implications to require pawn to request new targets from a foreign class.
Strategy Used
Strategy #2 is used. Although the concern of adding additional stress to Pawn in regards to the source control bottleneck is real, if the common back-system is associated with other files this alleviates the problem. This strategy gives a straightforward implementation that will be easy to use and is accessible to classes it should be accessible to.
Risks
Targeting must be accurate and must follow player expectations. Tweaking it to perfectly take into account player orientation and target distance from player will be a challenge. Most likely it will simply require play testing to find a good balance. If targeting is used for a multitude of different items this could also put stress on the system.
3.6 Ranged Weapons
Several ranged grenade weapons are planned. These include: Oil Slick (lose control), Foam (slow player), and Molotov cocktail (fire, damage). Due to the wide variety of effects they provide it is important to make them robust and behave as expected.
Primary Goal – Provide weapons for the players to throw at each other.

Solution Requirements

· Projectiles react on impact with players, the ground and walls.

· Proper attachment to mesh.
· Generates correct area effect in both appearance and behavior.
Strategy #1 – Common Weapon Base Object
This first strategy is to inherit all weapons from a common base into their own classes. Each class will have dedicated behavior and may spawn other classes for ‘after effects’, such as the oil left from the oil slick.
Advantages:

· Straight forward implementation that accounts for each ranged weapon being fully different.
· Approach identical to previous weapon modifications that programmers have done, providing familiarity.
· Follows proper object orientated programming and the unreal model of creating weapons.

Disadvantages:

· Requires creation of at least six new classes (inventory and pickup of each weapon), although potentially more helper classes.
Strategy Used
Strategy #1 is the only sane strategy. The weapons are far too different to try and push them all into the same class, and that would likely result in more code rather then less.
Risks
Weapon modification is one area that the programmers are relatively familiar with already, so this should not prove any significant risks. Causing the ranged weapons to behave properly with regard to after-effects will probably be the biggest challenge, although even this has been done before and is well documented.
3.7 Ball Passing and Goal Scoring
Both ball passing and goal scoring are essential to the game, but Unreal (Bombing Run) provides a good precedent for both. To assist the player passing the ball will be handled partially by the targeting system. Goal scoring will be slightly altered from standard Bombing Run scoring with the ability to throw the ball into the goal to score.
Primary Goal – Give the players a ball to fight over and goals to throw it through.
Solution Requirements

· Detect Goal scoring, both a skater w/ a ball and ball only.

· Proper Goal switching from designed script or randomly (TBD?).

· Correct ball physics, pickups, catching

· Integrated w/ targeting, player pass notification
Strategy #1 – Derive from Bombing Run
Inherit ball and goal from relevant Bombing Run classes and adapt to fit needs.
Advantages:

· Majority of work is already done, only small modifications must be made.
· Allows tapping in to a robust and bug-free code base.
· Follows proper object oriented and unreal design philosophy.

· Free up time for other tasks.

Disadvantages:

· May prove to be inflexible and difficult to add modifications needed.
· Relatively unfamiliar code base requires extra research.
· Passing may need to be handled differently to allow targeting to aim it.

Strategy #2 – Create a Custom Class
Create new classes that implement functionality. Use Bombing Run classes as a visual code base, but couple passing closely with targeting.

Advantages:

· Allows maximum flexibility.

· Does not require modification of existing code.

Disadvantages:

· Likely to require more time and effort.

· Still requires research into Bombing Run code to gain understanding of how they work.

· Requires implanting code that already exists in exchange for flexibility that may not be actually be restricted otherwise.
Strategy Used
Strategy #2 will be used because Bombing Run has too much unnecessary code for our mod. The creation of new code using Bombing Run as a reference should not pose any conflicts. The majority of the code is can be ripped straight from Bombing Run.
Risks
The biggest risk is the amount of time necessary to assess the Bombing Run code to determine what can be copied and what needs to be written from scratch.
3.8 Character Classes

The Game Design Document for Danger Ball ’77 calls for two character classes: Blocker and Jammer. The Blocker is slow but tough, the Jammer fast but fragile.

Primary Goal – Provide different stats for differing player classes.

The differences between the Jammer and Blocker classes are quantitative, not qualitative. Neither class possesses unique abilities denied to the other, making the distinction between the classes purely numerical—i.e., speed, strength, and so forth. The chart below lists all relevant differences:

	
	Jammers
	Blockers

	Maximum Stamina
	100
	140

	Stamina Regeneration
	12 per second
	6 per second

	Sprinting Cost
	15 per second
	8 per second

	Damage Reduction
	0%
	30%

	Increased Damage
	0%
	30%

Strategy Used

The development team will leverage the object-oriented design of UnrealScript to implement the two classes. Since the movement code calls for the extension of Pawn into a unique class tentatively titled “_77Pawn,” this derived class can be further extended into _77BlockerPawn and _77JammerPawn. Five member variables, for each dimension depicted in the chart above, can be included in _77Pawn, then subsequently defined in the defaultproperties structure of the Blocker and Jammer subclasses.

Risks

Given the ubiquitous extension of Pawn in Unreal Tournament 2004, an additional level of inheritance implies little to no risk. Further mitigating the risk is that fact that the distinctions between the character classes can be represented purely as floats and ints, both fundamental and thoroughly tested primitive types in Unreal.

3.9 Menu and HUD Subsystems

The in-game HUD consists of two bars lying across the upper and lower portions of the screen, with the play area visible in the center. The game title lies in the upper left corner of the display. A timer counts down the play time in the upper middle and is surrounded by each teams’ score. The team with the ball is highlighted. The upper left corner has an open area that will scroll down with text that informs all player who scored a goal or was beaten down by someone. The bottom left corner displays a colored icon of each of the three ranged weapons with the one selected to throw highlighted. A ball icon indicator points in the direction of the ball from the player’s position while an arrow points to the current goal. The lower right corner displays the player’s stamina bar.

Primary Goal – Replace all Unreal Menus and HUD with custom game elements.

Strategy Used

UnrealScript provides a rich variety of tools for designing and displaying multiple layers of menus as well as an in-game HUD. In addition, these elements are well-deployed in the networked version of the Bombing Run game type, which offers a game style very similar to Danger Ball ’77—two teams attempt to throw or carry a ball through designated scoring locations. Bombing Run gives the development team a prototype to follow while designing the custom menu and HUD subsystems.

Although Bombing Run does not offer players a selection of weapons and starting classes, numerous other mods have demonstrated that “picking menus” are feasible. In addition, the standard code base offers at least one precedent for such an option: At the beginning of an Onslaught map, players are prompted to select their initial spawning location.

Risks

The primary risk involved in developing a custom HUD and menu subsystem for Danger Ball ’77 lies in the suitability of the art assets rather than in the coding. To minimize these risks, the art assets used in these subsystems will closely resemble those used in the standard version of Unreal in terms of size, file format, color depth, etc. For actually getting those assets into the game itself, the development team will minimize risk by closely following the precedents established in HudCBombingRun and other files used for the Bombing Run game type.

3.10 Minor Systems

In addition to these major systems, several minor support sub-systems will be needed. All of these subsystems represent minimal risk and will be integrated into larger systems.
Camera Control

- Will provide proper camera positioning both in game, and during the class selection screen. This will be integrated into the skater pawn.

GameType / Shell

- This sub-system will be added to the custom game-type and provide stats such as current ball possession, the game’s score, current active goal, etc.
Networking

- The UnrealEngine 2 is designed with network play in mind. As no changes are being made to this networking base, no major problems are expected. However, because network play is critical to gameplay this element will need special attention.

Special Effects

- Special effects will be needed for weapon impacts, skater collisions, rail-grinding etc. These effects will be added where appropriate. These effects and their specifics can be determined by the level designers.
Section 4: Naming Conventions, Coding Standards, and Directory Structure
The naming convention will be built around the limitations of the UnrealScript and the best IDE available for UnrealScript. It will be designed to reduce confusion and to allow programmers to know the use of a variable without jumping around in code to find its declaration.

The best IDE available appears to be UDE. This is a version of WOTGreal licensed by Epic and provided for free with Unreal Tournament 2004. It provides many features of high quality IDE programs, but not all.

These serve mainly as guidelines. It is expected that the primary author of each class can be the main influence on that class’s code style, and editors of the class should be flexible enough to conform. Some ground rules will help to make all the code readable, however.

· UnrealScript is not case-sensitive, but human eyes tend to be. To make variables more readable they should always be typed in the same casing. Furthermore if a variable is a composite of multiple words each word following the first should be capitalized (e.g., redTeamRollerSkate, WhyWontYouDieAlreadyCount).
· Namespaces are not available in UnrealScript; therefore classes should be prefixed with the mod name initials. For instance our version of Pawn should be _77Pawn.

· UDE does not give variable type information without finding the declaration of the variable. It will be useful to ensure that the type of a variable is included in its name. For example rather then calling an Actor variable used in a loop ‘tmp’ or ‘loopVar’, it should be called ‘tmpActor’ or ‘tmpLoopVar’ however this is not required if it is obvious through the context of its use. (e.g., “Vec = Up cross Right;”)
· To enhance readability in UDE proper tabbing should always be used. Each level of bracket should be tabbed an additional time.

· Loops and If statements should be bracketed whenever they are non-trivial and brackets should be on equal tabbing following the control statement.

· Long statements should be broke into multiple lines if they extend beyond the side of the screen to increase code readability. It is perfectly fine to accomplish this through UnrealScript’s lax white space constraints (e.g., multi-lined if statement). Whitespace is not evil!
The directory structure is predetermined by the Unreal, however the source control directory structure must be determined. The major concern is to keep it orderly so that everything is easy to find and it does not impede workflow.
In the base SVN directory the following directories exist:
· Documents

· Repository for all documents created by the team and documents of general use to the team.

· Levels

· Repository for work-in-progress versions of levels.

· Art

· Repository for work versions of art, in editable file formats.

· Source

· Repository for source code with sub-directories for branches.

· Patches

· Repository for patches, to make sure the team is all on the same driver versions and version of Unreal.

· Builds

· Repository for final builds, milestones, and test-builds. Internally multiple folders will each represent the full installed Unreal file structure so that copy-paste will be the most required to run a build.

Builds will be numbered sequentially, and milestones will not interfere. Rather a build number will be associated with a given milestone (e.g., build may be Alpha milestone, but it is labeled Build #33 – Alpha). Build numbers are not associated with milestone numbers.

Section 5: Milestones
With our extremely short development cycle it becomes important not only to set milestones, but to meet them. These technical milestone definitions will roughly follow the overall game milestones as defined by the publisher.
Milestone #1 – January 9th, 2006
· Set up source control repository. Make sure it works by adding test maps.
· Set up source control policies.

· Make sure everyone is running on the same tools and the same version of those tools. Also make sure the drivers, firmware, etc that people are working on are all the same.

· Define technical requirements of the project.

· Define technical roles for all the programmers and possibly for some of the level designers that will be writing Unreal script.
· Bug database defined.

· Coding standards and naming conventions defined.

Milestone #2 – January 16th, 2006

· Initial prototyping of core gameplay programming complete. This means some proof-of-concept version of the gameplay systems are in a presentable state. Core systems include:
· Player movement/physics code
· Rail grinding code
· Targeting system
· HUD and Menu system
· Goal scoring

· Begin familiarizing the level designers with the additional features available to them in game’s modified version of Unreal Ed.

· Refine the technical roles based on the proof-of-concept systems.

· TDD updated with changes discovered in creation of initial prototyping of core gameplay programming.

Milestone #3 – January 23rd, 2006

· All core gameplay systems fully prototyped.

· Initial prototyping of secondary gameplay programming complete. This means some proof-of-concept version of the gameplay systems are in a presentable state. Secondary systems include:

· Weapons

· Classes

· Ball passing

· Graphical karma physics objects
· Sounds including Music, Ambient, and Effects

· TDD updated with changes discovered in creation of fully working core gameplay and initial prototyping of secondary gameplay programming.

Milestone #4 – January 30th, 2006

· All secondary gameplay systems fully prototyped.

· Initial prototyping of a playable prototype level which includes all core and secondary gameplay systems.

· TDD updated with changes discovered in creation of fully working secondary gameplay systems.

Milestone #5 – February 6th, 2006

· Fully working playable prototype level with all gameplay systems in place complete.

· Begin porting over prototype code into an initial debug release.
Milestone #6 – February 13th, 2006

· A standardized build-able debug build has been defined.

· At least 75% of bug fixing in all core gameplay mechanics has been completed.
· Core gameplay mechanics have all features fully implemented. Essentially this means the “finishing touches” have been applied to core gameplay features. For example, the rail grinding code now has a spark emitter as the player grinds a rail.

· TDD updated with changes discovered in implementing finishing touches for core gameplay mechanics.

Milestone #7 (Alpha) – February 20th, 2006

· At least 75% of bug fixing in all secondary gameplay mechanics has been completed.
· Secondary gameplay mechanics have all features fully implemented. Essentially this means the “finishing touches” have been applied to all secondary gameplay features.

· TDD updated with changes discovered in implementing finishing touches for secondary gameplay mechanics.

Milestone #8 – February 27th, 2006

· Remaining bugs in the core gameplay mechanics have been completely eradicated.
· Begin creation of a standardized build-able release build has been defined.
· TDD updated to reflect the state of final bug-free version of core gameplay programming.
Milestone #9 (Beta) – March 6th, 2006

· Remaining bugs in secondary gameplay mechanics have been completely eradicated.

· A release build has been built and fully tested.

· Begin work on installer, CD layout, credits, etc.

· TDD updated to reflect the state of final bug-free version of secondary gameplay programming.

Milestone #10 (Gold) – March 17th, 2006

· Game is finished. This means on a fresh computer with Unreal installed, the game CD can be inserted and it will go through installation and have a fully playable game.

· Ensure TDD accurately reflects the final state of the game.

· PARTY!

Section 6: Technology Used

The primary technology required for development of Danger Ball ’77 is Epic Games’ Unreal Tournament 2004. Every member of the development team will use the DVD edition, patched to version 3355. Because Danger Ball ’77 is a mod built atop Unreal, every aspect of the technology used in the development cycle is informed by this choice:

6.1 Target Specifications
Danger Ball ’77 requires no additional hardware or software capabilities beyond what is already required to use Unreal Tournament 2004:

Minimum System Requirements:

Operating System: Windows® 98/Me/2000/XP
Processor: Pentium® III or AMD Athlon 1.0 GHz processor or faster
Memory: 128 MB RAM minimum

Hard Disk Space: 5.5 GB free
Video: Any Windows-compatible video card

Sound: Windows®-compatible sound card. NVIDIA® nForce(tm) or other motherboards/soundcards containing the Dolby® Digital Interactive Content Encoder required for Dolby Digital audio
DirectX®: DirectX® version 8.1(included) or higher
Multiplayer: Internet (TCP/IP) and LAN (TCP/IP)play supported

Recommended System Requirements:

Operating System: Windows® 98/Me/2000/XP
Processor: 1.5 GHz or faster processor recommended
Memory: 256 MB RAM
Hard Disk Space: 5.5 GB free
Video: NVIDIA GeForce 2 or ATI Radeon with at least 64 megs of video memory
Sound: Windows®-compatible sound card. NVIDIA® nForce(tm) or other motherboards/soundcards containing the Dolby® Digital Interactive Content Encoder required for Dolby Digital audio
DirectX®: DirectX® version 8.1(included) or higher
Multiplayer: 33.6K baud modem or broadband Internet connection recommended

[image: image2.png]

 INCLUDEPICTURE "http://unrealtournament.com/images/spacer.gif" * MERGEFORMATINET [image: image3.png]

6.2 Tools

All members of the development team will use licensed copies of Epic Games’ Unreal Tournament 2004. Some members of the team will use additional software, most of which is included with Unreal:

Software Engineers: Epic Games’ UDE, Epic Games’ UCC.

Level Designers: Epic Games’ UnrealEd 3.0

Artists: 3D Studio Max 7, Adobe Photoshop
6.3 Cost Analysis

Because Danger Ball ’77 is not a commercial product, the present licenses possessed by the development team are sufficient. All tools used in the creation of the game have already been paid for.

Every member of the development team has purchased a copy of Unreal Tournament 2004 and is therefore licensed to create mods (see below).

Guildhall at SMU, the publisher of Danger Ball ’77, has already purchased educational licenses for Discreet’s 3D Studio Max 7. Every member of the development team has a stand-alone copy of this license, which grants use for all non-commercial purposes.

According to the Unreal Tournament 2004 End-User License Agreement, the purchase of Unreal Tournament 2004 is sufficient to release content generated in UDE and UnrealEd.

Epic Games grants permission to publish mods for Unreal Tournament 2004, subject to certain restrictions enumerated in section 11.b of the most recent version of the EULA (released January 11, 2005):

Using UnrealEd, you may create modifications or enhancements to the Software, including the construction of new levels (collectively referred to as “Mods”), subject to the following restrictions:

i. Your Mods must only work with the full, registered copy of the Software, not independently or with any other software.

Analysis: Danger Ball ’77 makes no alterations to the current copy-protection technologies already present in Unreal Tournament 2004. Though pirated copies doubtless exist, the development team will not include any code to make Danger Ball ’77 compatible with a pirated version of the game, nor will any testing be conducted to test Danger Ball ‘77’s suitability for use with illegal copies of Unreal Tournament 2004.
ii. Your Mods must not contain modifications to any executable file(s).
Analysis: Danger Ball ’77 contains no modifications to any executable. All changes to game play are implemented through UnrealScript.

iii. Your Mods must not contain any libelous, defamatory, or other illegal material, material that is scandalous or invades the rights of privacy or publicity of any third party, nor may your Mods contain, or be used in conjunction with, any trademarks, copyright-protected work, or other recognizable property of third parties, nor may your Mods be used by you, or anyone else, for any commercial exploitation including, but not limited to: (a) advertising or marketing for a company, product or service.
Analysis: Danger Ball ’77 contains no representations of actual people and therefore contains no libelous or defamatory content. All graphic, sonic, and code assets present in Danger Ball ’77 are either a) existing assets included in Unreal Tournament 2004; b) original creations of the development team; c) copyrighted works for which the author has granted a license (this last case applies only to music licensed for use in the game). Finally, Team Ampersand and the Guildhall at SMU shall not use Danger Ball ’77 for any advertising or marketing related purpose.

iv. Your Mods shall not be supported by Atari, Epic or any of such parties' affiliates and subsidiaries, and if distributed pursuant to this license your Mods must include a statement to such effect.
Analysis: The documentation distributed with Danger Ball ’77 shall include language to this effect.
v. Your Mods must be distributed solely for free, period. Neither you, nor any other person or party, may sell them to anyone, commercially exploit them in any way, or charge anyone for receiving or using them without prior written consent from Epic Games Inc. You may, exchange them at no charge among other end-users and distribute them to others over the Internet, on magazine cover disks, or otherwise for free.
Analysis: Danger Ball ’77 shall be distributed solely through noncommercial channels, for example, the Guildhall at SMU website or a unique website that makes Danger Ball ’77 freely available for download.

vi. The prohibitions and restrictions in this section apply to anyone in possession of the Software or any of your Mods.
Analysis: All members of the development team must observe the restrictions of the Unreal Tournament 2004 EULA. Documentation distributed along with Danger Ball ’77 shall explicitly state that use of the Danger Ball ’77 is governed by the January 11, 2005 version of Epic Games’ Unreal Tournament 2004 EULA.
To view the most recent copy of the Unreal Tournament 2004 EULA, see http://www.epicgames.com/ut2k4_eula.html.
PAGE
1

